Math 235

Final S09 Answers

1. a) A basis for the nullspace is $\{x\}$, hence the nullity of L is 1. Thus, by the dimension theorem we have rank $L+1=\dim P_2=3$, hence rank L=2.

b) Let
$$B = \{\vec{v}_1, ..., \vec{v}_n\}$$
 then $[L] = [[L(\vec{v}_1)]_C \cdots [L(\vec{v}_n)]_C]$

- c) If $A\vec{v} = \lambda \vec{v}$, with $\vec{v} \neq \vec{0}$ then \vec{v} is an eigenvector of A with eigenvalue λ .
- d) A is symmetric if and only if A is orthogonally diagonalizable.
- e) State Schur's theorem.

Every square matrix is unitarily similar to a upper triangular matrix T where the diagonal entries of T are the eigenvalues of A.

2. a)
$$\operatorname{proj}_W \vec{y} = (-3, -5, 1) + (6, -4, -2) = (3, -9, -1)$$

b)
$$\sqrt{40}$$
.

3.

$$\begin{split} \|\operatorname{proj}_{W}\vec{v}\|^{2} + \|\vec{v} - \operatorname{proj}_{W}\vec{v}\|^{2} &= <\operatorname{proj}_{W}\vec{v}, \operatorname{proj}_{w}\vec{v} > + <\vec{v} - \operatorname{proj}_{w}\vec{v}, \vec{v} - \operatorname{proj}_{W}\vec{v} > \\ &= <\operatorname{proj}_{W}\vec{v}, \operatorname{proj}_{W}\vec{v} > + <\vec{v}, \vec{v} - \operatorname{proj}_{W}\vec{v} > - <\operatorname{proj}_{W}\vec{v}, \vec{v} - \operatorname{proj}_{W}\vec{v} > \\ &= <\operatorname{proj}_{W}\vec{v}, \operatorname{proj}_{W}\vec{v} > + <\vec{v}, \vec{v} - \operatorname{proj}_{W}\vec{v} > -0 \\ &= <-\operatorname{proj}_{W}\vec{v}, -\operatorname{proj}_{W}\vec{v} > + <\vec{v}, \vec{v} > + (\vec{v}, -\operatorname{proj}_{W}\vec{v} > \\ &= <\vec{v}, \vec{v} > - <\vec{v} - \operatorname{proj}_{W}\vec{v}, -\operatorname{proj}_{W}\vec{v} > \\ &= \|\vec{v}\|^{2} - 0 \end{split}$$

4. a)
$$Q(x_1, y_1) = 3x_1^2 + 16y_1^2$$
, Q is positive definite, $P = \begin{bmatrix} -3/\sqrt{13} & 2/\sqrt{13} \\ 2/\sqrt{13} & 3/\sqrt{13} \end{bmatrix}$.

- **5.** Since the eigenvalues of A and B are all positive we have that A and B are positive definite hence $\vec{x}^T A \vec{x} > 0$ and $\vec{x}^T B \vec{x} > 0$ for all $vx \neq \vec{0}$. Hence $\vec{x}^T (A+B) \vec{x} = \vec{x}^T A \vec{x} + \vec{x}^T B \vec{x} > 0$ for all $vx \neq \vec{0}$ so A+B is positive definite and thus has all positive eigenvalues.
- **6.** y = 6.6 + 2.2t.

7. a)
$$A = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
.

b) A is already in real canonical form with $\lambda = 1 - i$ and P = I.

- **8.** $\vec{v}_1 = (1, i, 0), \ \vec{v}_2 = (i, 1, 2i), \ \vec{v}_3 = (\frac{1}{3}i, \frac{1}{3}, -\frac{1}{3}i)$
- **9.** If AB is Hermitian, then $(AB) = (AB)^* = B^*A^* = BA$, since A and B are Hermitian. If AB = BA, then $(AB)^* = B^*A^* = BA = AB$.
- 10. Let λ be an eigenvalue of A with unit eigenvector \vec{z} . Then,

$$\begin{split} \lambda &= \lambda < \vec{z}, \vec{z} > = <\lambda \vec{z}, \vec{z} > = < A \vec{z}, \vec{z} > \\ &= < \vec{z}, A \vec{z} > = < \vec{z}, \lambda \vec{z} > = \overline{\lambda} < \vec{z}, \vec{z} > = \overline{\lambda} \end{split}$$

Hence $\lambda = \overline{\lambda}$ so λ is real.

11. By Schur's theorem, there exist an upper triangular matrix T and unitary matrix U such that $U^*AU = T$. We just need to prove that T is in fact diagonal. Observe that

$$TT^* = (U^*AU)(U^*A^*U) = U^*AA^*U = U^*A^*AU = (U^*A^*U)(U^*AU) = T^*T.$$

Hence T is also normal and if we compare the diagonal entries of TT^* and T^*T we get

$$|t_{11}|^{2} + |t_{12}|^{2} + \dots + |t_{1n}|^{2} = |t_{11}|^{2}$$

$$|t_{22}|^{2} + \dots + |t_{2n}|^{2} = |t_{12}|^{2} + |t_{22}|^{2}$$

$$\vdots$$

$$|t_{nn}|^{2} = |t_{1n}|^{2} + |t_{2n}|^{2} + \dots + |t_{nn}|^{2}$$

Hence, we must have $t_{ij} = 0$ for all $i \neq j$ and hence T is diagonal as required.

12.
$$U = \begin{bmatrix} 0 & 1 & 0 \\ (1+i)/\sqrt{3} & 0 & (1+i)/\sqrt{6} \\ -1/\sqrt{3} & 0 & 2/\sqrt{6} \end{bmatrix}, \qquad D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

- **13.** a) TRUE. $H^* = (A+Bi)^* = A^* iB^* = A + Bi$. So $A^T = A^* = A$ and $B^T = B^* = -B$.
- b) FALSE. Not normal.
- c) TRUE. Let $A = U^*BU$ then $\det(A \lambda I) = \det(U^*) \det(B \lambda I) \det(U) = \det(B \lambda I)$.
- d) TRUE. $PP^T = I \Rightarrow \det(PP^T) = 1 \Rightarrow \det P = \pm 1$.
- e) FALSE. A needs to be positive definite.