
Math 235 Sample Term Test 1 - 2 Answers

NOTE: - Only answers are provided here (and some proofs). On the test you must provide
full and complete solutions to receive full marks.

1. Short Answer Problems

a) Let A =

1 0 0 −1
0 0 1 1
0 0 0 0

. Write a basis for the Row(A), Col(A) and Null(A).

Solution: A basis for Row(A) is




1
0
0
−1

 ,


0
0
1
1


. A basis for Null(A) is




0
1
0
0

 ,


1
0
−1
1




A basis for Col(A) is


1

0
0

 ,

0
1
0

.

b) Let B = {~v1, . . . , ~vn} be orthonormal in an inner product space V and let
~v = a1~v1 + · · ·+ an~vn. Prove that ai =< ~v,~vi >.

Solution: Taking the inner product of both sides with ~vi to get
< ~v,~vi >=< a1~v1 + · · ·+ an~vn, ~vi >= a1 < ~v1, ~vi > + · · ·+ an < ~vn, ~vi >= ai

since B is orthonormal.

c) State the Rank-Nullity Theorem.

Solution: Suppose that V is an n-dimensional vector space and that L : V → W is a linear
mapping into a vector space W . Then rank(L) + Null(L) = n.

d) Find the rank and nullity of the linear mapping T : P2 → M(2, 2) defined by

T (a + bx + cx2) =

[
c b
0 c

]
.

Solution: rank(T ) = 2, nullity(T ) = 1.

2. Let L : M(2, 2) → M(2, 2) be given by L(A) =

[
1 2
3 4

]
AT . Find the matrix for L

relative to the standard basis B of M(2, 2), where B =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
.

Solution: [L]B =


1 2 0 0
0 0 1 2
3 4 0 0
0 0 3 4

 .

1



2

3. Let B = {~v1, ~v2} be a basis for V . Let a be a scalar constant. Let T : V → V be linear
and T (~v1) = a~v1 + a~v2, T (~v2) = 3~v1 − a~v2. For what values of a is T an isomorphism?

Solution: a 6= 0 and a 6= −3.

4. Let N be the plane in R3 with basis


 1

0
−1

 ,

 1
−1

1

 . Define an explicit isomor-

phism to establish that P1 and N are isomorphic. Prove that your map is an isomorphism.

Solution: Define a mapping T : P1 → N where

T (a + bx) = a

 1
0

−1

 + b

 1
−1

1

 .

To show that T is linear, let p(x) = a + bx, q(x) = c + dx, and k is a scalar constant. Then

T (kp(x) + q(x)) = T ((ka + c) + (kb + d)x)

= (ka + c)

 1
0

−1

 + (kb + d)

 1
−1

1


= k

a

 1
0

−1

 + b

 1
−1

1

 +

c

 1
0

−1

 + d

 1
−1

1


= kT (p(x)) + T (q(x)).

To show that T is one-to-one, we will show that the nullspace of T is {0}. Suppose that

T (a + bx) = ~0. Then

a

 1
0

−1

 + b

 1
−1

1

 =

 0
0
0

 .

This implies that a + b = 0 and −b = 0, hence a = b = 0. Therefore, the only element of
P1 that is in the nullspace of T is 0.

Now P1 and N have the same dimension, which is 2. Since T is one-to-one, T is also
onto, therefore T is an isomorphism.

5. Let T be a linear operator on an inner product space V , and suppose that 〈~x, ~y〉 =
〈T (~x), T (~y)〉 for all ~x and ~y in V . Prove that T is an isomorphism.

Solution: We are given that T is linear. Show T is one-to-one and onto. (Will be solved in
the tutorial)

6. Let Q be an n × n orthogonal matrix, and let ~x and ~y be orthogonal vectors in Rn.
Show that Q~x and Q~y are orthogonal.
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Solution: Since ~x and ~y are orthogonal, ~x · ~y = 0. Also, QT Q = I. Recall that ~x · ~y = ~xT~y.
Then

(Q~x) · (Q~y) = (Q~x)T (Q~y) = ~xT QT Q~y = ~xT~y = 0.

Therefore, Q~x and Q~y are orthogonal.

7. The following is an orthonormal basis for R3: B =


 1/

√
6

−2/
√

6

1/
√

6

 ,

 1/
√

3

1/
√

3

1/
√

3

 ,

 1/
√

2
0

−1/
√

2

 .

Using B (or other methods), determine another orthonormal basis for R3 which includes

the vector

 1/
√

6

1/
√

3

1/
√

2

, and briefly explain why your basis is orthonormal.

Solution: The 3× 3 matrix whose column vectors are the three vectors in B is orthogonal.
The given vector is the first row of this matrix. Since rows of an orthogonal matrix are
orthonormal, we can use the rows to form an orthonormal basis for R3:

 1/
√

6

1/
√

3

1/
√

2

 ,

 −2/
√

6

1/
√

3
0

 ,

 1/
√

6

1/
√

3

−1/
√

2

 .

8. Consider P2 with inner product 〈p(x), q(x)〉 = p(−1)q(−1) + p(0)q(0) + p(1)q(1).

a) Find the value of 〈1− x− x2, 1 + x2〉.
Solution: 〈1− x− x2, 1 + x2〉 = (1)(2) + (1)(1) + (−1)(2) = 1.

b) Find the distance between 1− x− x2 and 1 + x2.

Solution: The distance is ||(1− x− x2)− (1 + x2)|| =
√

(−1)2 + (0)2 + (−3)2 =
√

10.

c) Determine the coordinates of 1− 2x + x2 with respect to the orthonormal basis

B =

{
1√
3
,

1√
2
x,

1√
6
(2− 3x2)

}
.

Solution: [1− 2x + x2]B =

 5/
√

3

−4/
√

2

−2/
√

6

.

d) Given that S = {1 − x2, 1
2
(x − x2)} is orthonormal, extend S to find an orthonormal

basis for P2.

Solution: {1− x2, 1
2
(x− x2), 1

2
(x + x2)} is an orthonormal basis of P2.

9. Let V be a real inner product space with inner product 〈 , 〉 and let ~u,~v ∈ V . Prove
that ‖~u + ~v‖2 = ‖~u‖2 + ‖~v‖2 if and only if < ~u,~v >= 0.
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Solution: We have

‖~u2 + ~v‖2 =< ~u + ~v, ~u + ~v >=< ~u, ~u + ~v > + < ~v, ~u + ~v >

=< ~u, ~u > + < ~u,~v > + < ~v, ~u > + < ~v,~v >

= ‖~u‖2 + 0 + 0 + ‖~v‖2

= ‖~u‖2 + ‖~v‖2

If ~u,~v ∈ Rn, then we have

‖~u‖2 + ‖~v‖2 = ‖~u2 + ~v‖2 = ‖~u‖2+ < ~u,~v > + < ~v, ~u > +‖~v‖2 = ‖~u‖2 + 2 < ~u,~v > +‖~v‖2.

Hence 2 < ~u,~v >= 0 and < ~u,~v >= 0 as required.

10. Let U, V,W be real vectors spaces and let L : U → V and M : V → W be linear
mappings. Prove that if L and M are onto, then M ◦ L is onto.

Solution: To show M ◦ L : U → W is onto, we need to show that for every ~w ∈ W , there
exists a ~u ∈ U such that (M ◦ L)(~u) = ~w.

Let ~w ∈ W . Then, since M is onto, there exists ~v ∈ V such that M(~v) = ~w. Similarly,
since L is onto, there exists ~u ∈ U such that L(~u) = ~v. Thus, we have

(M ◦ L)(~u) = M(L(~u)) = M(~v) = ~w,

as required.

11. Let V be an n-dimensional vector space over R and let S be the vector space of all
linear operators L : V → V .

a) Prove that S is isomorphic to M(n, n).

Solution: Let B be a basis for V . Define T (L) = [L]B. Prove this is the desired isomorphism.

b) Give, with proof, a basis for S.

Solution: Let C = {~e1, . . . , ~en2} be the standard basis for M(n, n). By definition of an
isomorphism, T is invertible and T−1 is an isomorphism from M(n, n) → S. Moreover, we
have that the set

D = {T−1(~e1), . . . , T
−1(~en2)}

is linearly independent since T−1 is one-to-one and C is linearly independent. Thus, since
dim S = n2 as it is isomorphic to M(n, n) we have that D is a set of n2 linearly independent
vectors in S and hence is a basis for S.


