- 1. Short Answer Problems
- a) Let $f: \mathbb{R}^2 \to \mathbb{R}$. What is the definition of f being continuous at a point (a, b)?
- b) Let $f: \mathbb{R}^2 \to \mathbb{R}$. What condition on f_x and f_y guarantees that the linear approximation of f is a good approximation?
- c) State Taylor's Theorem with second degree remainder.
- d) Let $f: \mathbb{R}^3 \to \mathbb{R}$. What is the formula for the linear approximation of f at the point (a, b, c)?
- **2.** Let $f(x,y) = \sqrt{|1 x^2 y^2|}$.
- a) What is the domain and range of f?
- b) Sketch the level curves and cross sections of z = f(x, y).
- **3.** Prove that if $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable at (a,b) then f is continuous at (a,b).
- **4.** Let $g: \mathbb{R}^2 \to \mathbb{R}$ and let $f(x,y) = g(y^2, xy)$. Find $\frac{\partial^2 f}{\partial x \partial y}$. What assumptions do you need to make about g so that you can apply the chain rule?
- 5. Let $f(x,y) = \ln(2x 3y)$.
- a) Find the linear approximation $L_{(2,1)}(x,y)$ of f.
- b) Use Taylor's Theorem to show that $|R_{1,(2,1)}(x,y)| \le \frac{15}{2} \left[(x-2)^2 + (y-1)^2 \right]$ for $x \ge 2, y \le 1$.
- **6.** Let $f(x,y) = 2x^2 + xy^3$.
- a) State the definition of the directional derivative $D_{\hat{u}}f(a,b)$ of f at (a,b) in the direction of the unit vector \hat{u} .
- b) Find the rate of change of f at the point (1,2) in the direction of the vector (1,-3).
- c) In what direction from (-2,1) does f change most rapidly and what is the maximum rate of change.
- 7. Determine if each of the following limits exist. Evaluate the limits that exist.
- a) $\lim_{(x,y)\to(0,0)} \frac{x^2 xy y^2}{x^2 + y^2}$.
- b) $\lim_{(x,y)\to(0,0)} \frac{x^2 |x| |y|}{|x| + |y|}$.
- 8. Consider the function

$$f(x,y) = \begin{cases} \frac{x^{4/3}y}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0). \end{cases}$$

- a) Where is f differentiable on its domain?
- b) Based on your answer in part a), what can you conclude about the continuity of both f_x and f_y at (0,0)?